<!--NOLIM--><!--NLM011--><!--settings{"applyTo":"1","elemClass":"animat"}settingsend--> <script> (function(){ function t_ready(e) { "loading" != document.readyState ? e() : document.addEventListener ? document.addEventListener("DOMContentLoaded", e) : document.attachEvent("onreadystatechange", function() { "loading" != document.readyState && e() }) } var t396_waitForFinalEvent = function() { var e = {}; return function(t, n, o) { o || (o = "Don't call this twice without a uniqueId"), e[o] && clearTimeout(e[o]), e[o] = setTimeout(t, n) } }(); function checkscale() { let e = document.querySelectorAll(".t396__artboard_scale .animat .tn-atom"); Array.prototype.forEach.call(e, function(e) { let t = window.getComputedStyle(e.closest(".tn-atom__scale-wrapper")).transform; if(t!='none') { e.closest(".tn-atom__scale-wrapper").style.removeProperty("transform"), e.closest(".animat").style.transform = t } }) } t_ready(function() { if (window.isFirefox || window.isOpera) { let e = document.querySelector("body"), t = document.createElement("style"); if (e.appendChild(t), t.setAttribute("id", "nlm011delete"), t.type = "text/css", t.styleSheet ? t.styleSheet.cssText = ".animat{display:none!important;" : t.appendChild(document.createTextNode(".animat{display:none!important;")), document.querySelectorAll(".t396__artboard_scale").length > 0) { let elList = 0; let count = 0; let int = setInterval(function() { let e = document.querySelectorAll(".t396__artboard_scale .animat"); let elList2 = e.length; if (elList == elList2) { count += 1; if (count == 3) { clearInterval(int); if (e.length == document.querySelectorAll(".t396__artboard_scale .animat .tn-atom").length) { checkscale(); setTimeout(function() { checkscale(); }, 0); let e = document.querySelector("#nlm011delete"); null !== e.parentNode && e.parentNode.removeChild(e), window.addEventListener("resize", function(e) { t396_waitForFinalEvent(function() { window.isMobile ? document.documentElement.clientWidth !== window.tn_window_width && checkscale() : checkscale() }, 500, "resizeruniqueid") }, !0); window.addEventListener("orientationchange", function() { t396_waitForFinalEvent(function() { window.isMobile ? document.documentElement.clientWidth !== window.tn_window_width && checkscale() : checkscale() }, 500, "resizeruniqueid") }); } } } else { count = 0; elList = elList2; } },50); } } }); })() </script> <style> .animat{ overflow:hidden!important; } </style>
Einstein Work Summaries automates case summaries by predicting and filling in key details such as summary, issue, and resolution. With Einstein's contextual understanding, the generated summaries become more accurate and detailed as chat sessions progress. When agents end a chat, Einstein promptly generates a new summary, issue, and resolution based on the complete conversation. It helps to boost agent efficiency and streamline service experiences.